Signal transduction underlying carbachol-induced contraction of human urinary bladder.

نویسندگان

  • Tim Schneider
  • Charlotte Fetscher
  • Susanne Krege
  • Martin C Michel
چکیده

The present study was designed to reexamine the muscarinic acetylcholine receptor subtype mediating carbachol-induced contraction of human urinary bladder and to investigate the underlying signal transduction. Based upon the nonselective tolterodine, the highly M(2)-selective (R)-4-[2-[3-(4-methoxy-benzoylamino)-benzyl]-piperidin-1-ylmethyl]piperidine-1-carboxylic acid amide (Ro-320-6206), and the highly M(3)-selective darifenacin and 3-(1-carbamoyl-1,1-diphenylmethyl)-1-(4-methoxyphenylethyl)pyrrolidine (APP), contraction occurs via M(3) receptors. The phospholipase C inhibitor 1-(6-[([17beta]-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl)-1H-pyrrole-2,5-dione (U 73,122) (1-10 microM) did not significantly affect carbachol-stimulated bladder contraction. The phospholipase D inhibitor butan-1-ol relative to its negative control butan-2-ol (0.3% each) caused small but detectable inhibition of carbachol-induced bladder contraction. The Ca(2+) entry blocker nifedipine (10-100 nM) strongly inhibited carbachol-induced bladder contraction. In contrast, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole HCl (SK&F 96,365) (1-10 microM), an inhibitor of store-operated Ca(2+) channels, caused little inhibition. The protein kinase C inhibitor bisindolylmaleimide I (1-10 microM) did not significantly affected carbachol-induced bladder contraction. In contrast, trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide (Y 27,632) (1-10 microM), an inhibitor of rho-associated kinases, concentration dependently and effectively attenuated the carbachol responses. We conclude that carbachol-induced contraction of human urinary bladder via M(3) receptors largely depends on Ca(2+) entry through nifedipine-sensitive channels and activation of a rho kinase, whereas phospholipase D and store-operated Ca(2+) channels contribute only in a minor way. Surprisingly, phospholipase C or protein kinase C do not seem to be involved to a relevant extent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca2+ sources.

We have reexamined the muscarinic receptor subtype mediating carbachol-induced contraction of rat urinary bladder and investigated the role of phospholipase (PL)C, D, and A2 and of intra- and extracellular Ca2+ sources in this effect. Based on the nonsubtype-selective tolterodine, the highly M2 receptor-selective (R)-4-[2-[3-(4-methoxy-benzoylamino)-benzyl]-piperidin-1-ylmethyl]-piperidine-1-ca...

متن کامل

M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. I. Normal rat bladder.

The muscarinic receptor subtype-activated signal transduction mechanisms mediating rat urinary bladder contraction are incompletely understood. M(3) mediates normal rat bladder contractions; however, the M(2) receptor subtype has a more dominant role in contractions of the hypertrophied bladder. Normal bladder muscle strips were exposed to inhibitors of enzymes thought to be involved in signal ...

متن کامل

Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases.

We have investigated the role of several protein kinases in carbachol-stimulated, M(3) muscarinic receptor-mediated contraction of rat urinary bladder. Concentration-response curves for the muscarinic receptor agonist carbachol were generated in the presence of multiple concentrations of inhibitors of various protein kinases, their inactive controls, or their vehicles. Bladder contraction was n...

متن کامل

M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II. Denervated rat bladder.

Normal rat bladder contractions are mediated by the M(3) muscarinic receptor subtype. The M(2) receptor subtype mediates contractions of the denervated, hypertrophied bladder. This study determined signal transduction mechanisms mediating contraction of the denervated rat bladder. Denervated bladder muscle strips were exposed to inhibitors of enzymes thought to be involved in signal transductio...

متن کامل

Signal Transduction Underlying Carbachol-Induced Contraction of Rat Urinary Bladder. I. Phospholipases and Ca Sources

We have reexamined the muscarinic receptor subtype mediating carbachol-induced contraction of rat urinary bladder and investigated the role of phospholipase (PL)C, D, and A2 and of intraand extracellular Ca sources in this effect. Based on the nonsubtype-selective tolterodine, the highly M2 receptorselective (R)-4-{2-[3-(4-methoxy-benzoylamino)-benzyl]-piperidin1-ylmethyl}-piperidine-1-carboxyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 309 3  شماره 

صفحات  -

تاریخ انتشار 2004